skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. RNAs are often studied in nonnative sequence contexts to facilitate structural studies. However, seemingly innocuous changes to an RNA sequence may perturb the native structure and generate inaccurate or ambiguous structural models. To facilitate the investigation of native RNA secondary structure by selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE), we engineered an approach that couples minimal enzymatic steps to RNA chemical probing and mutational profiling (MaP) reverse transcription (RT) methods—a process we call template switching and mutational profiling (Switch-MaP). In Switch-MaP, RT templates and additional library sequences are added postprobing through ligation and template switching, capturing reactivities for every nucleotide. For a candidate SAM-I riboswitch, we compared RNA structure models generated by the Switch-MaP approach to those of traditional primer-based MaP, including RNAs with or without appended structure cassettes. Primer-based MaP masked reactivity data in the 5′ and 3′ ends of the RNA, producing ambiguous ensembles inconsistent with the conserved SAM-I riboswitch secondary structure. Structure cassettes enabled unambiguous modeling of an aptamer-only construct but introduced nonnative interactions in the full-length riboswitch. In contrast, Switch-MaP provided reactivity data for all nucleotides in each RNA and enabled unambiguous modeling of secondary structure, consistent with the conserved SAM-I fold. Switch-MaP is a straightforward alternative approach to primer-based and cassette-based chemical probing methods that precludes primer masking and the formation of alternative secondary structures due to nonnative sequence elements. 
    more » « less
  2. Free, publicly-accessible full text available February 1, 2026
  3. SreA is one of seven candidate S-adenosyl methionine (SAM) class I riboswitches identified in Listeria monocytogenes, a saprophyte and opportunistic foodborne pathogen. SreA precedes genes encoding a methionine ATP-binding cassette (ABC) transporter, which imports methionine, and is presumed to regulate transcription of its downstream genes in a SAM-dependent manner. The proposed role of SreA in controlling the transcription of genes encoding an ABC transporter complex may have important implications for how the bacteria senses and responds to the availability of the metabolite SAM in the diverse environments in which L. monocytogenes persists. Here we validate SreA as a functional SAM-I riboswitch through ligand binding studies, structure characterization, and transcription termination assays. We determined that SreA has both a similar structure and SAM binding properties to other well characterized SAM-I riboswitches. Despite apparent structural similarities to previously described SAM-I riboswitches, SreA induces transcription termination in response to comparatively lower (nM) ligand concentrations. Furthermore, SreA is a leaky riboswitch that permits some transcription of the downstream even in the presence of mM SAM suggesting that L. monocytogenes may “dampen” the expression of genes for methionine import, but likely does not turn them “OFF”. 
    more » « less
  4. The mid-Pleistocene transition (MPT) [~1.25 to 0.85 million years ago (Ma)] marks a shift in the character of glacial-interglacial climate. One prevailing hypothesis for the origin of the MPT is that glacial deep ocean circulation fundamentally changed, marked by a circulation “crisis” at ~0.90 Ma (marine isotope stages 24 to 22). Using high-resolution paired neodymium, carbon, and oxygen isotope data from the South Atlantic Ocean (Cape Basin) across the MPT, we find no evidence of a substantial change in deep ocean circulation. Before and during the early MPT (~1.30 to 1.12 Ma), the glacial deep ocean variability closely resembled that of the most recent glacial cycle. The carbon storage facilitated by developing deep ocean stratification across the MPT required only modest circulation adjustments. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Abstract In the southern Indian Ocean, the position of the subtropical front – the boundary between colder, fresher waters to the south and warmer, saltier waters to the north – has a strong influence on the upper ocean hydrodynamics and biogeochemistry. Here we analyse a sedimentary record from the Agulhas Plateau, located close to the modern position of the subtropical front and use alkenones and coccolith assemblages to reconstruct oceanographic conditions over the past 300,000 years. We identify a strong glacial-interglacial variability in sea surface temperature and productivity associated with subtropical front migration over the Agulhas Plateau, as well as shorter-term high frequency variability aligned with variations in high latitude insolation. Alkenone and coccolith abundances, in combination with diatom and organic carbon records indicate high glacial export productivity. We conclude that the biological pump was more efficient and strengthened during glacial periods, which could partly account for the reported reduction in atmospheric carbon dioxide concentrations. 
    more » « less
  7. null (Ed.)
  8. Abstract A common conception of the deep ocean during ice age episodes is that the upper circulation cell in the Atlantic was shoaled at the Last Glacial Maximum compared to today, and that this configuration facilitated enhanced carbon storage in the deep ocean, contributing to glacial CO2draw‐down. Here, we test this notion in the far South Atlantic, investigating changes in glacial circulation structure using paired neodymium and benthic carbon isotope measurements from International Ocean Discovery Program Site U1479, at 2,615 m water depth in the Cape Basin. We infer changes in circulation structure across the last glacial cycle by aligning our site with other existing carbon and neodymium isotope records from the Cape Basin, examining vertical isotope gradients, while determining the relative timing of inferred circulation changes at different depths. We find that Site U1479 had the most negative neodymium isotopic composition across the last glacial cycle among the analyzed sites, indicating that this depth was most strongly influenced by North Atlantic Deep Water (NADW) in both interglacial and glacial intervals. This observation precludes a hypothesized dramatic shoaling of NADW above ∼2,000 m. Our evidence, however, indicates greater stratification between mid‐depth and abyssal sites throughout the last glacial cycle, conditions that developed in Marine Isotope Stage 5. These conditions still may have contributed to glacial carbon storage in the deep ocean, despite little change in the mid‐depth ocean structure. 
    more » « less